Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Microb Pathog ; 191: 106678, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38718954

RESUMO

A conditionally pathogenic bacterium called Bibersteinia trehalosi inhabits the upper respiratory tract of ruminants and is becoming a significant cause of pneumonia, especially in goats. In this study, we identified a gram-negative bacteria strain isolated from dead goat's lungs, which was named M01. By integrating the outcomes of its morphological and biochemical characterization with the investigation of the 16S rRNA gene sequence analysis, the isolate was identified as B. trehalosi. Based on antibiotic susceptibility tests, the isolate was shown to be resistant to ß-lactams, tetracyclines, and amphenicols. Its genome was discovered to comprise 2115 encoded genes and a circular chromosome measuring 2,345,568 bp using whole genome sequencing. Annotation of the VFBD database revealed that isolate M01 had four virulence genes encoding three virulence factors. The CARD database revealed that its genome has two antibiotic-resistance genes. Based on pathogenicity testing, isolate M01 was highly pathogenic to mice, primarily causing pneumonia, with an LD50 of 1.31 × 107 CFU/ml. Moreover, histopathology showed loss of alveolar structure and infiltration of lung inflammatory cells. Hence, the current study could provide sufficient information for prevention and control strategies for future epidemics of B. trehalosi in goat species.

2.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38270573

RESUMO

Since the large-scale outbreak of porcine epidemic diarrhoea (PED) in 2010, caused by the genotype 2 (G2) variant of the porcine epidemic diarrhoea virus (PEDV), pig farms in China, even those vaccinated with the G2b vaccine, have experienced infections from the G2a variant, leading to significant economic losses. This study successfully isolated the G2a strain DY2020 from positive small intestine contents (SICs) by blind passage on Vero cells for four generations. The SICs were taken from Daye, Hubei Province, China. The biological characteristics were identified by indirect immunofluorescence assay (IFA) and transmission electron microscopy (TEM). The growth kinetics of the strain on Vero cells were detected by TCID50, and the virus titre could reach 107.35 TCID50 ml-1 (SD: 5.07×106). The pathogenicity towards colostrum-deprived piglets was conducted by assessing faecal viral shedding, morphometric analysis of intestinal lesions, and immunohistochemical staining. The results showed that DY2020 was highly virulent to colostrum-deprived piglets, with severe watery diarrhoea and other clinical symptoms appeared at 6 h post-infection (h p.i.), and all died within 30 h. Pathological tissue examination results showed that the lesions mainly occurred in the intestines of piglets, causing pathological changes such as shortening of intestinal villi. In summary, the discovery of the G2a strain DY2020 in this study is of great significance for understanding Hubei PEDV and provides an important theoretical basis for the development of new efficient PEDV vaccines.


Assuntos
Vírus da Diarreia Epidêmica Suína , Chlorocebus aethiops , Animais , Suínos , Virulência , Células Vero , China , Diarreia/veterinária
3.
Vaccines (Basel) ; 11(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37631860

RESUMO

Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (EP), leading to a mild and chronic pneumonia in swine. Relative control has been attained through active vaccination programs, but porcine enzootic pneumonia remains a significant economic challenge in the swine industry. Cellular immunity plays a key role in the prevention and control of porcine enzootic pneumonia. Therefore, the development of a more efficient vaccine that confers a strong immunity against M. hyopneumoniae is necessary. In this study, a multi-antigen chimera (L9m6) was constructed by combining the heat-labile enterotoxin B subunit (LTB) with three antigens of M. hyopneumoniae (P97R1, mhp390, and P46), and its immunogenic and antigenic properties were assessed in a murine model. In addition, we compared the effect of individual administration and multiple-fusion of these antigens. The chimeric multi-fusion vaccine induced significant cellular immune responses and high production of IgG and IgM antibodies against M. hyopneumoniae. Collectively, our data suggested that rL9m6 chimera exhibits potential as a viable vaccine candidate for the prevention and control of porcine enzootic pneumonia.

4.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511601

RESUMO

Actinobacillus pleuropneumoniae (APP) is the causative pathogen of porcine pleuropneumonia, a highly contagious respiratory disease in the pig industry. The increasingly severe antimicrobial resistance in APP urgently requires novel antibacterial alternatives for the treatment of APP infection. In this study, we investigated the effect of tea polyphenols (TP) against APP. MIC and MBC of TP showed significant inhibitory effects on bacteria growth and caused cellular damage to APP. Furthermore, TP decreased adherent activity of APP to the newborn pig tracheal epithelial cells (NPTr) and the destruction of the tight adherence junction proteins ß-catenin and occludin. Moreover, TP improved the survival rate of APP infected mice but also attenuated the release of the inflammation-related cytokines IL-6, IL-8, and TNF-α. TP inhibited activation of the TLR/MAPK/PKC-MLCK signaling for down-regulated TLR-2, TLR4, p-JNK, p-p38, p-PKC-α, and MLCK in cells triggered by APP. Collectively, our data suggest that TP represents a promising therapeutic agent in the treatment of APP infection.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Actinobacillus , Infecções por Mycoplasma , Pleuropneumonia , Doenças dos Suínos , Animais , Suínos , Camundongos , Pleuropneumonia/microbiologia , Receptor 4 Toll-Like/metabolismo , Junções Íntimas , Pulmão/microbiologia , Infecções por Actinobacillus/tratamento farmacológico , Infecções por Actinobacillus/microbiologia , Chá/metabolismo , Doenças dos Suínos/microbiologia
5.
J Virol ; 97(7): e0065623, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37338411

RESUMO

Mounting evidence suggests that gut microbial composition and its metabolites, including short-chain fatty acids (SCFAs), have beneficial effects in regulating host immunogenicity to vaccines. However, it remains unknown whether and how SCFAs improve the immunogenicity of the rabies vaccine. In this study, we investigated the effect of SCFAs on the immune response to rabies vaccine in vancomycin (Vanco)-treated mice and found that oral gavage with butyrate-producing bacteria (C. butyricum) and butyrate supplementation elevated RABV-specific IgM, IgG, and virus-neutralizing antibodies (VNAs) in Vanco-treated mice. Supplementation with butyrate expanded antigen-specific CD4+ T cells and IFN-γ-secreting cells, augmented germinal center (GC) B cell recruitment, promoted plasma cells (PCs) and RABV-specific antibody-secreting cells (ASCs) generation in Vanco-treated mice. Mechanistically, butyrate enhanced mitochondrial function and activated the Akt-mTOR pathway in primary B cells isolated from Vanco-treated mice, ultimately promoting B lymphocyte-induced maturation protein-1 (Blimp-1) expression and CD138+ PCs generation. These results highlight the important role of butyrate in alleviating Vanco-caused humoral immunity attenuation in rabies-vaccinated mice and maintaining host immune homeostasis. IMPORTANCE The gut microbiome plays many crucial roles in the maintenance of immune homeostasis. Alteration of the gut microbiome and metabolites has been shown to impact vaccine efficacy. SCFAs can act as an energy source for B-cells, thereby promoting both mucosal and systemic immunity in the host by inhibiting HDACs and activation of GPR receptors. This study investigates the impact of orally administered butyrate, an SCFA, on the immunogenicity of rabies vaccines in Vanco-treated mice. The results showed that butyrate ameliorated humoral immunity by facilitating the generation of plasma cells via the Akt-mTOR in Vanco-treated mice. These findings unveil the impact of SCFAs on the immune response of the rabies vaccine and confirm the crucial role of butyrate in regulating immunogenicity to rabies vaccines in antibiotic-treated mice. This study provides a fresh insight into the relationship of microbial metabolites and rabies vaccination.


Assuntos
Vacina Antirrábica , Raiva , Camundongos , Animais , Raiva/prevenção & controle , Plasmócitos , Imunidade Humoral , Vancomicina/farmacologia , Proteínas Proto-Oncogênicas c-akt , Anticorpos Antivirais , Serina-Treonina Quinases TOR , Ácidos Graxos Voláteis , Butiratos
6.
Microbiol Spectr ; 11(3): e0433722, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212676

RESUMO

Streptococcus suis is an recognized zoonotic pathogen of swine and severely threatens human health. Zinc is the second most abundant transition metal in biological systems. Here, we investigated the contribution of zinc to the drug resistance and pathogenesis of S. suis. We knocked out the genes of AdcACB and Lmb, two Zn-binding lipoproteins. Compared to the wild-type strain, we found that the survival rate of this double-mutant strain (ΔadcAΔlmb) was reduced in Zinc-limited medium, but not in Zinc-supplemented medium. Additionally, phenotypic experiments showed that the ΔadcAΔlmb strain displayed impaired adhesion to and invasion of cells, biofilm formation, and tolerance of cell envelope-targeting antibiotics. In a murine infection model, deletion of the adcA and lmb genes in S. suis resulted in a significant decrease in strain virulence, including survival rate, tissue bacterial load, inflammatory cytokine levels, and histopathological damage. These findings show that AdcA and Lmb are important for biofilm formation, drug resistance, and virulence in S. suis. IMPORTANCE Transition metals are important micronutrients for bacterial growth. Zn is necessary for the catalytic activity and structural integrity of various metalloproteins involved in bacterial pathogenic processes. However, how these invaders adapt to host-imposed metal starvation and overcome nutritional immunity remains unknown. Thus, pathogenic bacteria must acquire Zn during infection in order to successfully survive and multiply. The host uses nutritional immunity to limit the uptake of Zn by the invading bacteria. The bacterium uses a set of high-affinity Zn uptake systems to overcome this host metal restriction. Here, we identified two Zn uptake transporters in S. suis, AdcA and Lmb, by bioinformatics analysis and found that an adcA and lmb double-mutant strain could not grow in Zn-deficient medium and was more sensitive to cell envelope-targeting antibiotics. It is worth noting that the Zn uptake system is essential for biofilm formation, drug resistance, and virulence in S. suis. The Zn uptake system is expected to be a target for the development of novel antimicrobial therapies.


Assuntos
Proteínas de Bactérias , Streptococcus suis , Animais , Humanos , Camundongos , Proteínas de Bactérias/genética , Resistência a Medicamentos , Streptococcus suis/genética , Suínos , Virulência/genética , Zinco
7.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108608

RESUMO

Streptococcus suis (S. suis) is one of the most important zoonotic pathogens that threaten the lives of pigs and humans. Even worse, the increasingly severe antimicrobial resistance in S. suis is becoming a global issue. Therefore, there is an urgent need to discover novel antibacterial alternatives for the treatment of S. suis infection. In this study, we investigated theaflavin (TF1), a benzoaphenone compound extracted from black tea, as a potential phytochemical compound against S. suis. TF1 at MIC showed significant inhibitory effects on S. suis growth, hemolytic activity, and biofilm formation, and caused damage to S. suis cells in vitro. TF1 had no cytotoxicity and decreased adherent activity of S. suis to the epithelial cell Nptr. Furthermore, TF1 not only improved the survival rate of S. suis-infected mice but also reduced the bacterial load and the production of IL-6 and TNF-α. A hemolysis test revealed the direct interaction between TF1 and Sly, while molecular docking showed TF1 had a good binding activity with the Glu198, Lys190, Asp111, and Ser374 of Sly. Moreover, virulence-related genes were downregulated in the TF1-treated group. Collectively, our findings suggested that TF1 can be used as a potential inhibitor for treating S. suis infection in view of its antibacterial and antihemolytic activity.


Assuntos
Biflavonoides , Infecções Estreptocócicas , Streptococcus suis , Humanos , Animais , Suínos , Camundongos , Simulação de Acoplamento Molecular , Biflavonoides/farmacologia , Biflavonoides/uso terapêutico , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia , Antibacterianos/uso terapêutico , Proteínas Hemolisinas/metabolismo
8.
Viruses ; 15(2)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36851748

RESUMO

Japanese encephalitis virus (JEV) infection causes host endoplasmic reticulum stress (ERS) reaction, and then induces cell apoptosis through the UPR pathway, invading the central nervous system and causing an inflammation storm. The endoplasmic reticulum stress inhibitor, 4-phenyl-butyric acid (4-PBA), has an inhibitory effect on the replication of flavivirus. Here, we studied the effect of 4-PBA on JEV infection both in vitro and vivo. The results showed that 4-PBA treatment could significantly decrease the titer of JEV, inhibit the expression of the JEV NS3 protein (in vitro, p < 0.01) and reduce the positive rate of the JEV E protein (in vivo, p < 0.001). Compared to the control group, 4-PBA treatment can restore the weight of JEV-infected mice, decrease the level of IL-1ß in serum and alleviate the abnormalities in brain tissue structure. Endoplasmic reticulum stress test found that the expression level of GRP78 was much lower and activation levels of PERK and IRE1 pathways were reduced in the 4-PBA treatment group. Furthermore, 4-PBA inhibited the UPR pathway activated by NS3, NS4b and NS5 RdRp. The above results indicated that 4-PBA could block JEV replication and inhibit ER stress caused by JEV. Interestingly, 4-PBA could reduce the expression of NS5 by inhibiting transcription (p < 0.001), but had no effect on the expression of NS3 and NS4b. This result may indicate that 4-PBA has antiviral activity independent of the UPR pathway. In summary, the effect of 4-PBA on JEV infection is related to the inhibition of ER stress, and it may be a promising drug for the treatment of Japanese encephalitis.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Japonesa (Subgrupo) , Encefalite Japonesa , Animais , Camundongos , Ácido Butírico , Encefalite Japonesa/tratamento farmacológico , Estresse do Retículo Endoplasmático
9.
Appl Environ Microbiol ; 89(1): e0184122, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36475883

RESUMO

Streptococcus suis is a major swine pathogen that is increasingly recognized as a porcine zoonotic pathogen that threatens the health of both pigs and humans. Metal homeostasis plays a critical role during the process of bacterial infection. In this study, RNA sequencing was used to identify potential candidate genes involved in the maintenance of intracellular copper homeostasis. CopA was identified as the primary copper exporter in S. suis. The copA deletion mutant strain was found to be more sensitive to copper and accumulated more intracellular copper than the wild-type (WT) parent strain. In addition, adding manganese increased the ability of S. suis to resist copper, and the manganese transporter, TroABCD, was involved in tolerance to copper. The copA deletion mutant strain accumulated less copper when supplemented with manganese. Furthermore, when cultured with copper, the double deletion mutant (ΔcopAΔtroA) exhibited improved growth compared to the copA deletion mutant strain. In addition, the double deletion mutant (ΔcopAΔtroA) accumulated less copper than the copA deletion mutant strain. These data were consistent with a model wherein defective TroABCD resulted in decreased cellular copper accumulation and protected the strain against copper poisoning. IMPORTANCE Metal homeostasis plays a critical role during the process of bacterial infection. We identified three important potential candidate genes involved in maintenance of intracellular copper homeostasis. CopA was demonstrated to be the main copper exporter in Streptococcus suis, and manganese increased the tolerance of S. suis to copper. The double deletion mutant (ΔcopAΔtroA) improved growth ability over the copA deletion mutant strain in the presence of high concentrations of copper and accumulated less copper. These findings are consistent with a model wherein defective TroABCD resulted in decreased cellular accumulation of copper and protected the strain against copper poisoning.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Humanos , Animais , Suínos , Cobre/toxicidade , Streptococcus suis/genética , Proteínas de Bactérias/genética , Manganês , Mutação , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia
10.
Animals (Basel) ; 12(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552462

RESUMO

The porcine reproductive and respiratory syndrome virus (PRRSV) causes a highly contagious disease in domestic swine. Signaling lymphocytic activation molecule family member 1 (SLAMF1) is a costimulatory factor that is involved in innate immunity, inflammation, and infection. Here, we demonstrate that overexpression of the SLAMF1 gene inhibited PRRSV replication significantly and reduced the levels of key signaling pathways, including MyD88, RIG-I, TLR2, TRIF, and inflammatory factors IL-6, IL-1ß, IL-8, TNF-ß, TNF-α, and IFN-α in vitro. However, the knockdown of the SLAMF1 gene could enhance replication of the PRRSV and the levels of key signaling pathways and inflammatory factors. Overall, our results identify a new, to our knowledge, antagonist of the PRRSV, as well as a novel antagonistic mechanism evolved by inhibiting innate immunity and inflammation, providing a new reference and direction for PRRSV disease resistance breeding.

11.
Front Cell Infect Microbiol ; 12: 973282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204637

RESUMO

Streptococcus suis (S. suis) is a highly virulent zoonotic pathogen and causes severe economic losses to the swine industry worldwide. Public health security is also threatened by the rapidly growing antimicrobial resistance in S. suis. Therefore, there is an urgent need to develop new and safe antibacterial alternatives against S. suis. The green tea polyphenol epigallocatechin gallate (EGCG) with a number of potential health benefits is known for its antibacterial effect; however, the mechanism of its bactericidal action remains unclear. In the present, EGCG at minimal inhibitory concentration (MIC) showed significant inhibitory effects on S. suis growth, hemolytic activity, and biofilm formation, and caused damage to S. suis cells in vitro. EGCG also reduced S. suis pathogenicity in Galleria mellonella larvae in vivo. Metabolomics and proteomics analyses were performed to investigate the underlying mechanism of antibacterial activity of EGCG at MIC. Many differentially expressed proteins involved in DNA replication, synthesis of cell wall, and cell membrane, and virulence were down-regulated after the treatment of S. suis with EGCG. EGCG not only significantly reduced the hemolytic activity of S. suis but also down-regulated the expression of suilysin (Sly). The top three shared KEGG pathways between metabolomics and proteomics analysis were ABC transporters, glycolysis/gluconeogenesis, and aminoacyl-tRNA biosynthesis. Taken together, these data suggest that EGCG could be a potential phytochemical compound for treating S. suis infection.


Assuntos
Streptococcus suis , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Catequina/análogos & derivados , Hemólise , Polifenóis/farmacologia , Proteômica , RNA de Transferência/metabolismo , Streptococcus suis/genética , Suínos , Chá/metabolismo
12.
Viruses ; 14(7)2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35891398

RESUMO

Swine enteric viruses are a major cause of piglet diarrhea, causing a devastating impact on the pork industry. To further understand the molecular epidemiology and evolutionary diversity of swine enteric viruses, we carried out a molecular epidemiological investigation of swine enteric viruses (PEDV, PDCoV, PoRVA, and TGEV) on 7107 samples collected from pig farms in south-central China. The results demonstrated that PEDV is the predominant pathogen causing piglet diarrhea, and its infection occurs mainly in relatively cold winter and spring in Hunan and Hubei provinces. The positive rate of PEDV showed an abnormal increase from 2020 to 2021, and that of PoRVA and PDCoV exhibited gradual increases from 2018 to 2021. PEDV-PoRVA and PEDV-PDCoV were the dominant co-infection modes. A genetic evolution analysis based on the PEDV S1 gene and ORF3 gene revealed that the PEDV GII-a is currently epidemic genotype, and the ORF3 gene of DY2020 belongs to a different clade relative to other GII-a strains isolated in this study. Overall, our results indicated that the variant PEDV GII-a is the main pathogen of piglet diarrhea with a trend of outbreak. G9 is the dominant PoRVA genotype and has the possibility of outbreak as well. It is therefore critical to strengthen the surveillance of PEDV and PoRVA, and to provide technical reserves for the prevention and control of piglet diarrhea.


Assuntos
Infecções por Coronavirus , Enterovirus Suínos , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Diarreia/epidemiologia , Diarreia/veterinária , Filogenia , Suínos , Doenças dos Suínos/epidemiologia
13.
Front Cell Infect Microbiol ; 12: 927840, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873172

RESUMO

Mycoplasma hyopneumoniae is a highly contagious pathogen causing porcine enzootic pneumonia, which elicits prolonged inflammatory response modulated by pattern recognition receptors (PRRs). Although significant advances have been achieved in understanding the Toll-Like receptors that recognize M. hyopneumoniae, the role of nucleotide-binding oligomerization domain 1 (NOD1) in M. hyopneumoniae infected cells remains poorly understood. This study revealed that M. hyopneumoniae activates the NOD1-RIP2 pathway and is co-localized with host NOD1 during infection. siRNA knockdown of NOD1 significantly impaired the TRIF and MYD88 pathway and blocked the activation of TNF-α. In contrast, NOD1 overexpression significantly suppressed M. hyopneumoniae proliferation. Furthermore, we for the first time investigated the interaction between M. hyopneumoniae mhp390 and NOD1 receptor, and the results suggested that mhp390 and NOD1 are possibly involved in the recognition of M. hyopneumoniae. These findings may improve our understanding of the interaction between PRRs and M. hyopneumoniae and the function of NOD1 in host defense against M. hyopneumoniae infection.


Assuntos
Infecções por Mycoplasma , Mycoplasma hyopneumoniae , Pneumonia Suína Micoplasmática , Animais , Inflamação , Mycoplasma hyopneumoniae/genética , Transdução de Sinais , Suínos
14.
Appl Environ Microbiol ; 88(9): e0008622, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35465691

RESUMO

Streptococcus suis has been increasingly recognized as a porcine zoonotic pathogen that threatens the health of both pigs and humans. Metal homeostasis plays a critical role in the antioxidative capability of bacteria, thus facilitating the escape of pathogenic species from the innate immunity systems of hosts. Here, we revealed that manganese increased the ability of S. suis to resist oxidative stress. RNA sequencing was used to identify potential candidate genes involved in the maintenance of intracellular manganese homeostasis. Four genes, termed troABCD, were identified by NCBI BLASTp analysis. The troA, troB, troC, and troD deletion mutant strains exhibited decreased intracellular manganese content and tolerance to H2O2 compared to the wild-type strain. Thus, troABCD were determined to be involved in manganese uptake and played an important role in H2O2 tolerance in S. suis. Furthermore, the inactivation of perR increased the survival of H2O2-pulsed S. suis 2.18-fold and elevated the intracellular manganese content. H2O2-pulsed S. suis and perR deletion mutants upregulated troABCD. This finding suggested that H2O2 released the suppression of troABCD by perR. In addition, an electrophoretic mobility shift assay (EMSA) showed that PerR at 500 ng binds to the troABCD promoter, indicating that troABCD were directly regulated by PerR. In conclusion, this study revealed that manganese increases tolerance to H2O2 by upregulating the expression of troABCD. Moreover, PerR-regulated Mn import in S. suis and increased the tolerance of S. suis to oxidative stress by regulating troABCD. IMPORTANCE During infection, it is extremely important for bacteria to defend against oxidative stress. While manganese plays an important role in this process, its role is unclear in S. suis. Here, we demonstrated that manganese increased S. suis tolerance to oxidative stress. Four manganese ABC transporter genes, troABCD, were identified. Oxidative stress increased the content of manganese in the cell. Furthermore, PerR increased the tolerance to oxidative stress of S. suis by regulating troABCD. Manganese played an important role in bacterial defense against oxidative stress. These findings provide novel insight into the mechanism by which S. suis resists oxidative stress and approaches to inhibit bacterial infection by limiting manganese intake.


Assuntos
Streptococcus suis , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Manganês/metabolismo , Estresse Oxidativo , Streptococcus suis/genética , Streptococcus suis/metabolismo , Suínos
15.
Microb Pathog ; 164: 105421, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35114350

RESUMO

Streptococcus suis (SS) is an important pathogen in pigs and can also cause severe infection in humans. Currently, more and more drug resistance is reported, resulting in the search for new drugs being needed urgently. Green tea polyphenols (GTP) was reported to inhibit many bacteria. However, SS response to GTP has not been studied before. In this report, the effect of GTP on growth, cell integrity, pathogenicity and metabolic pathway of SS was examined. The GTP inhibited growth, led to cellular damage, and attenuated pathogenicity of SS. Finally, GTP affected many important metabolic pathways of SS, such as ABC transporters, pyrimidine metabolism, protein digestion and absorption. The results provide new insight into the prevention and control of SS infection.


Assuntos
Streptococcus suis , Animais , Metabolômica , Polifenóis/farmacologia , Suínos , Chá , Virulência
16.
Chemosphere ; 295: 133802, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35149023

RESUMO

In this comment paper, some critical shortcomings and errors in the original paper [Chemosphere, 290, 133,307] are discussed. The authors have not adhered to the 12 Principles of Green Chemistry by incorporating the highly toxic metal Cd in their ferrite nanocomposite photocatalyst, despite its synthesis being described as green. Neither the necessity nor the effectiveness of Cd addition in relation to catalytic activity were explained. Although adsorption of the substrates on the catalyst is necessary for the photocatalytic process, excessive adsorption may give a false impression of efficient removal as opposed to true degradation or mineralization. This issue is extremely important for experimental design when the solubility of the substances is very low. The authors have disregarded the solvent effect of organic scavengers for the reactive species, potentially attributing a greater contribution of the degradation of substances to hydroxyl radicals. Some suggestions are also provided to improve their work in the field of photocatalysis.


Assuntos
Nanocompostos , Luz Solar , Cádmio , Catálise , Compostos Férricos , Cinética , Nanocompostos/química , Plásticos , Titânio/química
17.
Vet Med Sci ; 8(2): 700-709, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34914190

RESUMO

Arctigenin (ACT) is a novel anti-inflammatory lignan extracted from Arctium lappa L, a herb commonly used in traditional Chinese herbal medicine. In this study, we investigated the molecular mechanism whereby ACT inhibits PCV2 infection-induced proinflammatory cytokine production in vitro and in vivo. We observed that in PCV2 infection+ACT treated PK-15 cells, proinflammatory cytokine production was significantly reduced, compared to the PCV2-infected cells. The transfection and luciferase reporter assay confirmed that ACT suppressed NF-κB signalling pathway activation following PCV2 infection in PK-15 cells. Furthermore, western blotting demonstrated that ACT suppressed the NF-κB signal pathway in PCV2 infection-stimulated PK-15 cells by inhibiting the translocation of p65 from the cytoplasm to the nucleus and IκBα phosphorylation. BALB/c mice were used as a model to evaluate the anti-inflammatory effect of ACT in vivo. We found that the BALB/c mice inoculated with PCV2 infection + ACT treated showed a significant reduction of proinflammatory cytokine production in serum, lung and spleen tissue, compared to the PCV2-infected mice. Western blotting confirmed that ACT suppressed the NF-κB signal pathway in PCV2-infected mice by inhibiting the translocation of p65 from the cytoplasm to the nucleus and IκBα phosphorylation in lung tissue. Our studies first demonstrate that ACT inhibits PCV2 infection-induced proinflammatory cytokine production by suppressing the phosphorylation and nuclear translocation of NF-κB in vitro and in vivo. These results will help further develop ACT as a Traditional Chinese herbal medicine remedy in the treatment of porcine circovirus-associated diseases.


Assuntos
Infecções por Circoviridae , Medicamentos de Ervas Chinesas , Furanos , Lignanas , NF-kappa B , Animais , Anti-Inflamatórios/farmacologia , Infecções por Circoviridae/tratamento farmacológico , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Furanos/farmacologia , Lignanas/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Suínos
18.
Microb Pathog ; 158: 105118, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34339795

RESUMO

Porcine circovirus type 2 (PCV2) can cause various clinical diseases in pigs, resulting in huge losses for the pig farms all over the world. In order to develop a new strategy to control PCV2, it is essential to understand its mechanisms firstly, especially PCV2 interferes with the host's innate immunity. In the present study, lncRNA and mRNA expression profiles in porcine lymphnode response to PCV2 infection were deeply sequenced and analyzed. 3271 novel lncRNAs were identified in all. 1898 mRNAs and 282 lncRNAs showed differential expression between control and PCV2-infected groups. The bioinformatics analysis including lncRNA-mRNA co-expression network construction, as well as GO and KEGG pathway analysis focused on the DEGs was carried out. The results indicated that lncRNAs might participate in PCV2 infection-induced the pathogenesis of immunosuppression through regulating the host's immune responses, biological regulation, response to stimulus, cellular component organization or biogenesis and metabolism. And these differentially expressed lncRNAs might play important roles in response to PCV2 infection in the host's innate immune system. These findings provided a large-scale survey of dysregulated lncRNAs after PCV2 infection, especially the lncRNAs responded to host's innate immune within the lymphnode. This study will provide a novel insight into the lncRNAs' functions and the possible immunosuppressive mechanism induced by PCV2 infection. However, further research will be required to verify the characteristic function of the dysregulated lncRNAs.


Assuntos
Infecções por Circoviridae , Circovirus , RNA Longo não Codificante , Doenças dos Suínos , Animais , Infecções por Circoviridae/veterinária , Circovirus/genética , Biologia Computacional , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Suínos
19.
Chemosphere ; 281: 130860, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34020199

RESUMO

Although sulfite-based advanced oxidation processes (AOPs) have received renewed attention due to the production of oxysulfur radicals, the feasibility of using ultrasound (US) to activate sulfite remains unknown. In this work, low frequency ultrasound has been applied for the first time to develop a novel sulfite activation process (US-S(IV)) for enhanced oxidation of arsenite (As(III)). Our results showed that the US-S(IV) process with 1 mM sulfite addition and 20 kHz 650 W ultrasound can achieve approximately 2.9-fold increase in As(III) oxidation rate compared to the US process at pH 7. The mechanisms underpinning the US-S(IV) process have been probed through radical-scavenging experiments and electron spin resonance (ESR) spectrometry. Direct ultrasonolysis of sulfite has been demonstrated to be the predominant pathway producing the primary sulfite radical (SO3⁻) in the US-S(IV) process. Besides, the US-S(IV) process also works well in the treatment process of natural water, suggesting that this process could be promising in commercial scale application. This work not only provides a new application of ultrasound in sulfite-based AOP, but also provides further insights into how sulfite impacts the US process.


Assuntos
Arsenitos , Poluentes Químicos da Água , Oxirredução , Sulfitos , Ultrassom , Água , Poluentes Químicos da Água/análise
20.
Microb Pathog ; 150: 104724, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33400988

RESUMO

Japaneses encephalitis (JE) is most common zoonoses caused by Japanese encephalitis virus (JEV) with a high mortality and disability rate. To take timely preventive and control measures, early and rapid detection of JE RNA is necessary. But due to characteristic brief and low viraemia, JE RNA detection remains challenging. In this study, a real-time nucleic acid sequence-based amplification (RT-NASBA) was developed for rapid and simultaneous detection of JEV. Four pairs of primer were designed using a multiple genome alignment of all JEV strains from GenBank. NASBA assay established and optimal reaction conditions were confirmed by using primers and probe on ns1 gene of JEV. The specificity and sensitivity of the assay were compared with RT-PCR by using serial RNA and virus cultivation dilutions. The results showed that JEV RT-NASBA assay was established, and robust signals could be observed in 10 min with high specificity. The limit of dectetion of RT-NASBA was 6 copies per reaction. The assay was thus 100 to 1, 000 times more sensitive than RT-PCR. The cross-reaction was performed with other porcine pathogens, and negative amplification results indicated the high specificity of this method. The novel JEV RT-NASBA assay could be used as an efficient molecular biology tool to diagnose JEV, which would facilitate the surveillance of reproductive failure disease in swine and would be beneficial for public health security.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/diagnóstico , Replicação de Sequência Autossustentável , Sensibilidade e Especificidade , Suínos , Zoonoses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...